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N-­‐body	
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  galaxy	
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  photometry	
  

•  Can	
  generate	
  new	
  catalogs	
  in	
  ~1	
  week.	
  

simulated sky surveys 
developed with
Michael Busha (galaxies + sim)
Matt Becker (lensing + sim)
Brandon Erickson (sim pipeline)
Gus Evrard
Andrey Kravtsov

Peter Behroozi (halos)
Joerg Dietrich (shapes)
Basilio Santiago (stars)
Molly Swanson (mask)

Eli Rykoff, Rachel Reddick (testing)
+ additional feedback by CWG, Sarah Hansen, Jiangang Hao, Alex Ji, 
Eusebio Sanchez, Tim Eifler, Joanne Cohn, Martin White
+ many, many folks who will do analysis!
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K-­‐correct	
  

•  Cornerstone	
  of	
  the	
  photometric	
  and	
  spectroscopic	
  
components	
  of	
  the	
  simula2ons.	
  

•  Used	
  to	
  generate	
  colors	
  and	
  spectra	
  of	
  simulated	
  	
  galaxies.	
  
•  Key	
  issues:	
  galaxy	
  templates	
  and	
  priors	
  (put	
  in	
  separately).	
  	
  

Blanton	
  &	
  Roweis	
  (astro-­‐ph/0606170)	
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Kcorrect	
  templates	
  

•  5	
  eigentemplates	
  obtained	
  using	
  Non-­‐nega2ve	
  Matrix	
  
Factoriza2on	
  (NMF).	
  	
  

•  Generated	
  from	
  combina2on	
  of	
  450	
  star	
  emission	
  history	
  
templates	
  from	
  Bruzual	
  &	
  Charlot	
  (2003)	
  +	
  35	
  templates	
  from	
  
Kewley	
  et	
  al	
  (2001).	
  Resolu2on	
  3	
  Å	
  from	
  3200	
  to	
  9500	
  Å	
  	
  

•  Template-­‐resolu2on:	
  300	
  km/s;	
  R=1000.	
  
Training	
  sets:	
  
•  Spectroscopic:	
  1,600	
  	
  SDSS	
  Main	
  sample	
  +	
  400	
  LRGs.	
  
•  Photometric:	
  18,000	
  from	
  SDSS	
  Main	
  and	
  LRGs;	
  GOODS;	
  

DEEP2;	
  and	
  GALEX	
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Photometric	
  indicators	
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Fig. 7.— Top panel: Simulated redshift distribution with errors for an r < 21.8 sample. The
error bars are the 1σ simulated variability due to sample variance in the catalogs comprising

the training set. Also shown is the estimated N(z) for our sample. Lower panel: estimated
N(z) combined with the predicted sample variance errors from the simulation.

shot-noise equal for all galaxies, but can yield biases or an artificial broadening of the P (z) if
the training set is too sparse near the galaxy of interest. However, we do not find the volume

spanned by the 100 nearest neighbors to be a good indicator of the P (z) quality, because
other properties of the redshift-observable hyper-surface affect the local density of galaxies.
A potentially more interesting indicator of bias in individual P (z)s is the distribution of

observed properties for the training set nearest neighbors relative to the galaxy for which a
P (z) is needed - i.e there could be a bias if the galaxy is very offset from the center of the

distribution of neighbors. We leave these explorations for a future work.
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Sheldon,	
  Cunha,	
  Mandelbaum,	
  
Brinkmann,	
  Weaver	
  (2011)	
  	
  

N(z):	
  redshi`	
  
distribu2on	
  for	
  
BOSS	
  r<21.8	
  
sample	
  using	
  
weights	
  
	
  
Simula4on:	
  DES	
  
simula2ons	
  
	
  
Error	
  bars:	
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Fig. 8.— Best fit model spectra based on the five template fit to g, r and i fluxes, compared to the original
SDSS spectra from which we computed those fluxes. The models and the original spectra agree very well.
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Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements 13

derive the nonnegative linear combination of templates that best de-
scribed the some observations. In this case, the observations con-
sist of a sample of several thousand photometrically and/or spec-
troscopically observed galaxies, from the far UV to the near IR
(Blanton & Roweis 2007). The spectroscopic part of the training
data consisted of 400 luminous (LRGs) with 0.15 < z < 0.5
(Eisenstein & other 2001) and 1600 main sample galaxies with
0.0001 < z < 0.4 (Strauss et al. 2002), both sets of data observed
in the range 3800Å < λ < 9000Å.

We use the kcorrect subroutine to convert the true redshift
and error-free magnitudes of a simulated galaxy from our pho-
tometric simulation into a best-fitting spectral energy distribution
(SED). The SED is characterized by the coefficients of the 5 eigen-
templates, and are output as the variable coeffs, The coeffs
are then passed into the subroutine k reconstruct spec,
which produces a simulated spectrum with a resolution, in units
of velocity dispersion, of 300 km/s.

We pattern our mock survey loosely on the VIMOS-VLT
VVDS deep survey (Le Fèvre et al. 2005). The characteristics of the
instrument that we assume are: collecting area of 16π m2, aperture
of 5× 0.5arcsecs2 For simplicity, we assume a constant resolution
and dispersion of ∆λ = 7.14/pixel over the entire spectrograph
range of 5500 − 9500Å. Comparing the spectrograph window of
5500− 9500 to the spectroscopic coverage of the training set used
to create the simulated spectra, we see that for objects below red-
shift of 0.05, there is no spectroscopic representation of the train-
ing set galaxies in the range 9000 − 9500Å. More problematic is
the fact that the spectroscopic training set has wavelength cover-
age starting at 3800Å, and only goes to z = 0.4. As a result, for
galaxies at about z > 1.0, the blue side of the simulated spectra
are based solely on photometric data. Considering that most of the
SDSS main sample is below redshift of 0.2, the simulated spectra
should begin to lose resolution in the blue-end for z > 0.73. These
limitations in the simulated spectra result in higher-than-expected
incompleteness above z = 1.4, but do not affect the overall con-
clusions.

We use a Palomar sky extinction model (courtesy of Bev Oke
and J. Gunn) with 1.3 airmasses and altitude of 2635 meters to cal-
culate the atmospheric transmission fraction (the solid black line in
the bottom panel of Fig. A1). The instrument transmission is based
on the VIMOS instrument transmission function6 and is shown
as the dashed red line in the bottom panel of Fig. A1. The total
transmission is the convolution of the atmospheric and instrumen-
tal transmissions. We assume 16200 secs exposures for the fiducial
observation strategy and also investigate a scenario with 48600 secs
exposures.

We add atmospheric emission based on a median sky spec-
trum at the site7, shown at the top panel of Fig. A1. The total noise
is given by the rms sum of the atmospheric noise, shot-noise from
the galaxy spectrum itself and readout noise per pixel, which we
take to be a constant 5 photons. In reality, we only simulate the
noise-subtracted spectrum, as follows. First, we convert the differ-
ent spectra into photon counts for each pixel. We then assume the
atmospheric and galaxy noise follow a Poisson distribution, so that
the uncertainty in the produced noise is the square-root of the num-

6 http://www.eso.org/observing/etc/bin/gen/form?
INS.NAME=VIMOS+INS.MODE=SPECTRO
7 Sky spectrum obtained from http://www.gemini.edu/sciops/
ObsProcess/obsConstraints/atm-models/skybg\_50\
_10.dat
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Figure A1. Top panel: Atmospheric emission in units of
photons/s/nm/m2/arcsec2. Bottom panel: Atmospheric and instru-
mental transmission fractions, i.e fraction of photons that reach the focal
plane, used in our simulation. The total transmission function is given by
the convolution of the two transmissions.

ber of photons emitted. The readout noise is taken to be Gaussian.
We then calculate the total noise, N as

N =
√

natm + ngal + n2
read (A1)

where natm, ngal, and nread are the number of photons from the
atmosphere, the galaxy and the readout noise, respectively. The ex-
pected signal is simply the total number of photons from the galaxy.
The expectation value of the error in the flux, δF is then given by

δF = F
N
S

(A2)

To obtain the noise subtracted galaxy spectrum we, at each pixel,
sample from a Gaussian distribution with mean given by the flux
and width given by the error in the flux δF .

APPENDIX B: ARTIFICIAL NEURAL NETWORKS

We use an Artificial Neural Network (ANN) method to both esti-
mate the spectroscopic redshift quality and photometric redshifts,
using an implementation based on (Collister & Lahav 2004; Oyaizu
et al. 2008b) Despite the fancy name, an ANN is simply a function
which relates redshifts (or any quantity we wish to estimate) to pho-
tometric observables. The training set is used to determine the best-
fit value for the free parameters of the ANN. The best-fit parame-
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photons/s/nm/m2/arcsec2. Bottom panel: Atmospheric and instru-
mental transmission fractions, i.e fraction of photons that reach the focal
plane, used in our simulation. The total transmission function is given by
the convolution of the two transmissions.
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atmosphere, the galaxy and the readout noise, respectively. The ex-
pected signal is simply the total number of photons from the galaxy.
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To obtain the noise subtracted galaxy spectrum we, at each pixel,
sample from a Gaussian distribution with mean given by the flux
and width given by the error in the flux δF .

APPENDIX B: ARTIFICIAL NEURAL NETWORKS

We use an Artificial Neural Network (ANN) method to both esti-
mate the spectroscopic redshift quality and photometric redshifts,
using an implementation based on (Collister & Lahav 2004; Oyaizu
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Figure 1. Left panel:Spectroscopic success rate (SSR), defined as fraction of correct redshifts, as a function of true redshift. Central panel: SSR as function of
observed i-band magnitude. Right panel: SSR as a function the cross-correlation strength statistic R, which is a measure of the redshift confidence. All results
assume 16200 secs of integration time with the 3 additional templates.

(iii) Cross-correlation templates: Having an accurate and repre-
sentative set of galaxy spectral distribution templates is important
in deriving accurate redshifts and associated uncertainties. As we
discuss in the next section, this is particularly important for early-
type galaxies and galaxies at z > 1.5 (also known as the redshift
desert) because of the lack of strong emission features in the spec-
trograph window.

3.3 Principal emission lines

The two main emission lines used in optical spectroscopy are the
OII (singly-ionized oxygen) line at 3723Å and the Hα (first tran-
sition in the Balmer series) line at 6563Å. The main absorption
feature is the 4000Å break, caused by a confluence of absorption
lines, particularly the H and K Calcium lines. In high-resolution
spectroscopy, OII is the most important line because it is actually
a doublet – a pair of closely spaced lines. High-resolution observa-
tions - e.g. with DEEP2 (Newman et al. 2012), or SDSS (York et al.
2000) - can distinguish the doublet and hence confidently identify
OII. Low-resolution observations - e.g. as in the VVDS survey (Le
Fèvre et al. 2005), which is the case we are simulating, rely on
more than one feature. The limited spectral range of the instrument
sets the regions of redshift space where one can confidently iden-
tify spectra. In the case of VVDS, for example, there are roughly 5
different redshift regions:

• z < 0.4: The Hα can be detected, but OII cannot. Risk of
confusing Hα of a z < 0.4 galaxy for OII emission of a galaxy
at z > 0.8 Fortunately, these galaxies are mostly brighter and thus
theHα line combined with less prominent spectral features is suf-
ficient to take the spectrum.
• 0.4 < z < 0.6: Neither OII nor Hα can be detected. Red-

shifts have to be estimated based on secondary lines.
• 0.6 < z < 0.9: OII and other important lines (OIII - 5007Å,

Hβ - 4861Å) are detectable, but get progressively fainter towards
higher redshift (due to increasing atmospheric noise and instrumen-
tal sensitivity).
• 0.9 < z < 1.5: OIII and Hβ are out of the instrument range,

but OII still detectable.
• z > 1.5 (the redshift desert): Only minor features in the spec-

tra are available. Visual inspection to reduce incompleteness is es-
sential in this range. Potential for wrong redshifts is increased be-

cause atmospheric emission lines can be mistakenly identified by
the algorithm as real lines.

3.4 Additional systematics affecting the incompleteness

There are a few additional items contributing to the incomplete-
ness that are not modelled in our simulations but that exist in real
surveys:

• Fiber collisions: If angular separation between galaxies is too
small, one cannot simultaneously obtain spectra for them.
• Proximity to edge of tiles: The optics and the sensitivity of

CCDs tend to degrade near the edge of the detectors.
• CCD fringing: time-dependent variations in the pixel response

at red wavelengths results in correlated noise at different wave-
lengths.
• cosmic rays: can contaminate the spectra.

Issues such as fiber collisions, cosmic rays and edge effects
will reduce the completeness, more or less randomly, resulting
mostly in an increase in the shot noise, without galaxy type or red-
shift dependence.

4 METHODOLOGY

The procedure in the analysis was:
- Make simulated spectra.
- Estimate spectroscopic redshifts for training sample.
- Calculate photo-zs for training and photometric samples.
- Reproduce spectroscopic selection in photometric sample

with neural networks, or reproduce photometric sample distribu-
tions in the spectroscopic sample by applying weights.

- Estimate fiducial constraints and biases in weak lensing.

4.1 Photometric redshifts

We consider two different photo-z algorithms. We use a basic
template-fitting code without any priors, and a training-set fitting
method, which we briefly describe below.
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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Figure 3. Top panel: Distributions of true redshift for all galaxies (shaded
area), galaxies with R > 6 (solid line), galaxies with R > 5 (dashed line)
and galaxies with R > 4 (dotted line). Bottom panel: Distribution of true
redshift (solid lines) and spectroscopic redshift (dashed lines) for theR > 6
sample (black) and the R > 4 sample (red - gray).

5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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Figure 3. Top panel: Distributions of true redshift for all galaxies (shaded
area), galaxies with R > 6 (solid line), galaxies with R > 5 (dashed line)
and galaxies with R > 4 (dotted line). Bottom panel: Distribution of true
redshift (solid lines) and spectroscopic redshift (dashed lines) for theR > 6
sample (black) and the R > 4 sample (red - gray).

5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Conclusions	
  

•  N-­‐body	
  +	
  photometric	
  simula2ons	
  improving	
  constantly.	
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  preby	
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  depths.	
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  sufficient?	
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  larger	
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  et	
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  suggest	
  105	
  

galaxies)	
  
–  And	
  perhaps	
  larger	
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–  Use	
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Constraints on w (template-fitting photo-zs)

16200 secs bias(w)

Selection Gal. Frac. SSRT (%) σ(w) ztrue zspec

Qest > 1.5 0.75 91.4 0.07 0.004 - 0.52

Qest > 2.5 0.59 97.8 0.09 0.002 - 0.13

Qest > 3.5 0.46 99.6 0.10 -0.001 - 0.02

48600 secs

Qest > 1.5 0.96 93.6 0.06 0.004 - 0.39

Qest > 2.5 0.81 97.8 0.07 0.005 - 0.15

Qest > 3.5 0.66 99.6 0.08 0.003 - 0.03

Table 2. Statistical and systematical errors in w for the different samples.
The bias results shown used the template-fitting photo-zs. The Galax. Frac.
column indicates the fraction of galaxies from the full data set that passed
the selection cut.

in w are negligible compared to the statistical constraints, demon-
strating that the neural network can accurately match the spectro-
scopic selection to the photometric sample. The table also shows
the fraction of galaxies surviving the selection cuts. For example,
for the 16200 secs exposures, we see that the Qest > 3.5 cut re-
moves more than half of the sample, which results in nearly a factor
of two degradation in the statistical constraints relative to what is
achievable with the full sample (σ(w) = 0.055). The degradation
is so severe because most of the objects removed by the cut are at
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastating to the
weak lensing constraints. The bias in w is, perhaps, tolerable only
in the Qest > 3.5 cases. In the other scenarios one can see that the
biases in w are greater than the 1σ constraints even with close to
98% correct redshifts (SSRT ! 0.98).

Comparing the 48600 secs and 16200 secs results we see that
the magnitude of the biases in w are set entirely by the spectro-
scopic success rate (SSRT), regardless of the level of complete-
ness. This is another reminder that the emphasis must be on accu-
racy over completeness.

We investigated the dependence of the results on the photo-z
estimator by performing the WL analysis with the neural network
photo-zs instead of the template photo-zs. The resulting biases inw
are shown in the third column of Table 3. Comparing to the fourth
column where we reproduce the template photo-z biases from Ta-
ble 2, we see that the magnitude of the bias is very similar for the
two photo-z estimators, despite difference in the photo-z error dis-
tributions of both (see e.g. Cunha et al. 2012).

We also tested the possibility of decreasing the biases by
culling photo-z outliers. In the presence of wrong spectroscopic
redshifts, the culling could remove not only catastrophic photomet-
ric redshifts, but perhaps also identify the wrong zspecs. We used
the nearest-neighbor error estimator, NNE (Oyaizu et al. 2008a), to
cull 10% of the sample selected as the galaxies with largest NNE

error, (eNNE). Since the fraction of objects to be culled was fixed,
the value of the eNNE cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columns of Ta-
ble 3. For simplicity, we did not recalculate the fiducial constraints
when deriving the biases for the culled samples; given the quali-
tative nature of this analysis, this is a reasonable approximation.
The NNE cut seems quite effective for the neural network photo-zs,
typically reducing the biases by half. When the NNE culling was
applied to the template-fitting estimator, the effect was negligible
for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifying spectro-
scopic outliers when a training set based procedure is used. This
is by no means obvious since the NNE is very efficient at identi-
fying photo-z outliers even when template-fitting methods are used
(Oyaizu et al. 2008a). For comparison, we also tested the effect
of applying the same 10% cut using an error estimator from the
template-fitting code itself4. We find that the biases due to wrong
redshifts for theQest > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this error estimator
is also beneficial. In contrast, note that, in Cunha et al. (2012), we
found that culling based on photo-z error estimates had little impact
on cosmological biases.

Finally, we investigated the dependence of the results on the
settings of our spectroscopic pipeline, described in Sec. 3.1. We
find that our fiducial settings, despite giving the best high redshift
completeness, yielded the largest biases in w, shown in the Table
2. The different settings yielded consistent trends, and we focus on
one particular case, that highlights the importance of the pipeline
settings. The Original setting for the pipelinehad a factor of two
smaller bias for the Qest > 3.5 sample. In the Original setting,
recall that only 6 templates were used. As can be seen by compar-
ing the right plot in Fig. 4 with Fig. 5, the 3 additional templates
increased the redshift completeness above z > 1.4 but resulted
in leakage from the high ztrue bins to low zspec bins. In particu-
lar, some galaxies at ztrue ∼ 0.9 were assigned zspecs of ∼ 0.5
and ∼ 0.7. This failure mode was responsible for about 2/3 of the
increase in bias in going from the Original to the Fiducial setting.
The remainder of the difference was due to the fact that the Fiducial
setting uses czguess = 1.6 which has the effect of increasing the
probability that a galaxy will be assigned a high redshift. As a re-
sult, the Fiducial setting yields zspecs above 1.5 for several galaxies
with ztrue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because it leads to
the increase of the fraction of wrong redshifts which in turn implies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscopic and
photometric samples by culling the photometric sample. That is,
we selectively removed galaxies from the photometric sample so
that it statiscally matched, as closely as possible, the spectroscopic
sample. In this section we try a more agressive approach that allows
us to keep nearly the full photometric sample. Our technique is to
weight galaxies in the spectroscopic sample using the probwts
method of Lima et al. (2008) and Cunha et al. (2009), so that
the statistical properties of these weighted spectroscopic galaxies

4 The error estimate we use is the difference between the
Z BEST68 HIGH and Z BEST68 LOW outputs of the LePhare code.
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Conclusions	
  

•  Incompleteness:	
  
–  	
  Does	
  not	
  introduce	
  cosmological	
  biases	
  if	
  selec2on	
  matching	
  is	
  

performed.	
  	
  
–  Sta2s2cal	
  constraints	
  suffer	
  with	
  reduc2on	
  of	
  sample	
  size.	
  	
  

•  Wrong	
  redshi`s:	
  
–  Cause	
  severe	
  biases.	
  
–  Need	
  beber	
  than	
  99%	
  correct	
  redshi`s.	
  
–  If	
  99%	
  accuracy	
  not	
  possible,	
  need	
  to	
  calibrate	
  spectroscopic	
  error	
  

distribu2on	
  P(ztrue|zspec)	
  with	
  deeper	
  sample/beber	
  instrument.	
  

•  Moral	
  of	
  the	
  story:	
  Focus	
  has	
  to	
  be	
  on	
  accuracy	
  of	
  derived	
  
redshi`s.	
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Need	
  spectra,	
  so	
  what? 	
  	
  

Good	
  spectroscopic	
  samples	
  are	
  hard	
  to	
  come	
  by.	
  Issues	
  
•  Selec4on	
  in	
  observables:	
  typically	
  have	
  many	
  more	
  bright	
  

samples	
  than	
  faint	
  samples.	
  
•  Selec4on	
  in	
  non-­‐observables:	
  sample	
  selected	
  for	
  a	
  different	
  

purpose	
  with	
  different	
  bands	
  (e.g.	
  DEEP2	
  survey).	
  
•  Shot-­‐noise:	
  samples	
  are	
  small.	
  
•  Sample	
  variance:	
  surveys	
  are	
  pencil-­‐beam.	
  
•  Spectroscopic	
  failures:	
  	
  

–  Can’t	
  get	
  spectra	
  for	
  certain	
  galaxies.	
  
–  Wrong	
  spectroscopic	
  redshi`s.	
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Selec4on	
  matching	
  with	
  neural	
  net	
  

•  Have	
  a	
  redshi`	
  confidence	
  (Q)	
  for	
  galaxies	
  in	
  spectroscopic	
  sample.	
  
•  Use	
  neural	
  net	
  to	
  find	
  a	
  rela2on	
  between	
  Q	
  and	
  observables	
  

(magnitudes).	
  This	
  is	
  Qest.	
  

•  Qest	
  can	
  be	
  calculated	
  for	
  all	
  galaxies	
  in	
  the	
  spectroscopic	
  and	
  
photometric	
  samples.	
  

•  Poten2al	
  confusion:	
  Q	
  	
  is	
  a	
  new	
  quality	
  parameter	
  I	
  invented	
  to	
  
more	
  closely	
  approximate	
  the	
  quality	
  es2mates	
  of	
  real	
  surveys	
  like	
  
VVDS	
  and	
  DEEP2.	
  It’s	
  just	
  a	
  rescaling	
  (plus	
  discre2za2on)	
  of	
  the	
  R	
  
(cross-­‐correla2on	
  strength)	
  parameter.	
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–  When	
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Figure 1. Normalized spectroscopic redshift distribution for the
full data. The red (light gray) error bars show the 1-σ variability
in the redshift distribution for contiguous 1 deg2 angular patches.
The blue (dark gray) error bars show the variability in the redshift
distribution assuming random samples of with the same mean
number of objects as the 1 deg2 patches. We assume that only a
25% random subsample of each patch is targeted for spectroscopy,
yielding about 1.2× 104 galaxies per patch on average.

= δCtrain
β − δCphot

β (17)

where the second line trivially follows given that the true,
underlying power spectra are the same for the training and
photometric galaxies. All of the shear power spectra biases
δC can straightforwardly be evaluated from Eq. (11) by us-
ing the contamination coefficients for the training and pho-
tometric fields, respectively. Therefore, the effective error in
the power spectra is equal to the difference in the biases of
the training set spectra (our estimates of the biases in the
observable quantities) and the photometric set spectra (the
actual biases in the observables).

5 RESULTS

We present our results in this section. In Sec. 5.1 we com-
pare the effects of sample variance on the spectroscopic red-
shifts and the photometric observables, concluding that the
effects on the redshifts are dominant. We then discuss the
impact of sample variance on photo-z training in Sec. 5.2,
finding that the effect on the photo-z scatter statistics is
negligible, but that it does introduce variability in the esti-
mate of the overall redshift distribution. The effect is much
smaller for photo-z methods that use a fitting-function, such
as the NNP, but pronounced for the density-based estima-
tors such as the p(z)w. In Sec. 5.3, we look at the impact of
sample variance in calibration of the photo-z error distribu-
tions, finding that it dominates shot-noise for the scenarios
we simulate. Finally, in Sec. 5.4 we examine the dependence
of our results on the number of tomographic bins used.

5.1 Spectroscopic redshift variance vs. photo-z
variance

Large-scale structure not only correlates the spatial distribu-
tion of galaxies, but also correlates the distribution of galaxy
types, colors, and other properties. For example, if there is

a big galaxy cluster in some patch on the sky, red galax-
ies will be over-represented in that patch. Since red galaxies
typically have better photo-z’s than blue galaxies, this LSS
fluctuation could result in additional bias in photo-z train-
ing and error calibration. Because this extra systematic is
indirectly caused by the existence of large-scale structures,
we refer to it as sample variance of the photo-zs, to differ-
entiate it from sample variance purely in galaxy positions,
hereafter sample variance in the spec-zs.

We use the conditional probabilities P (zp|zs) and
P (zs|zp) to disentangle the two sources of sample variance.
The key point is that P (zs|zp) is sensitive to changes in the
zs distribution, but not in the zp distribution. Conversely,
P (zp|zs) is only sensitive to changes in the zp distribution,
but not in zs (one can be convinced of this point by con-
structing simple toy examples).

We estimate the variability of the error distributions
across patches by the standard deviation about the mean.
For P (zp|zs) we define

σ(P (zp|zs)) =

��
patches

�
P (zp|zs)− P (zp|zs)

�2

Npatches
(18)

where P (zp|zs) is the mean ’leakage’ across the patches. We
equivalently define the quantity σ(P (zs|zp)). We are inter-
ested in the increase in variability relative to the case of a
random subsample.

In the top panel of Fig. 2 we show the ratio of
σ(P (zp|zs)) calculated for the 0.25 deg2 LSS patches and the
corresponding 0.25 deg2 random-equivalent patches. In the
bottom panel of the same figure, we show the correspond-
ing ratio for σ(P (zs|zp)). We perform this test using the
template photo-zs so as to isolate the importance of sample
variance on the calibration of the error matrices. Comparing
the two plots, we see that sample variance of the photo-z’s
does not increase appreciably between the random and the
LSS patches, i.e. the ratios in each pixel are very close to
unity. The sample variance of the spec-zs, on the other hand,
shows marked increase, as was already apparent from Fig. 1.

5.2 Sample variance in photo-z training

In this section we examine the effects of sample variance in
the training of photo-zs finding that the commonly reported
scatter in the photo-z estimation is affected by the shot noise
but not by sample variance.

Table 1 shows the photo-z scatter of the photometric
sample for the polynomial method as well as the width of
the p(z)ws, averaged over all galaxies and all training iter-
ations. The photo-z scatter is defined as the standard de-
viation (around zero) of the P (zp − zs) distribution. The
average mean width of the p(z)w is defined as the average,
over all training iterations, of the mean 1-σ width of the
p(z)ws of the galaxies in the photometric sample. Compar-
ison of the corresponding ’LSS’ and ’Random’ columns in
the Table shows that large-scale structure does not affect
the photo-z or p(z)w statistics significantly. The training set
size is important, however, as larger training sets have lower
shot noise. For the polynomial photo-z’s, we see a 12% degra-
dation in the scatter between the 6 deg2 and 0.25 deg2 cases.
The p(z)ws are much more sensitive, with a degradation of
63%.
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Figure 8. Relation between number of independent patches and galaxies observed per patch so that the calibration bias will yield a

bias/error ratio in w that is less than 1.0 with 95% probability. We consider three different telescope apertures based on capabilities of

existing telescopes: 1/4 deg
2
(solid black), 1/8 deg

2
(solid red) and 1/32 deg

2
(or 112.5 arcmin2; blue). The first two scenarios correspond

to the optimistic and pessimistic assumptions about the effective observing area of Magellan. The VIMOS-VLT instrument could observe

about 1/16 deg
2
. The diagonal light gray lines indicate contours of fixed total number of galaxies, while the vertical band indicates

typical number of galaxies per observed patch possible with a single pointing of Magellan or VLT. For a fixed number of galaxies per

patch, the total number of patches required is higher for a smaller patch area in order to compensate for the increased sample variance

per patch. Similarly, if the survey can observe more galaxies in each patch, then the total number of patches obviously decreases since

fewer patches will be required to calibrate the shot noise, at the expense of increasing the total number of galaxies required.

Ωm = 0.25 and σ8 = 0.8 in a 1Gpc/h box with 11203 par-
ticles. The lightcone output necessary for the ADDGALS
algorithm was created by pasting together 33 snapshots in
the redshift range z = 0− 1.33. This results in a 220 sq de-
gree lightcone whose orientation was selected such that there
are no particle replications in the inner ∼ 100 sq. deg. and
minimal replications in the outer regions.

The ADDGALS algorithm used to create the galaxy
distribution consists of two steps: galaxies based on an in-
put luminosity function are first assigned to particles in
the simulated lightcone, after which multi-band photome-
try is added to each galaxy using a training set of observed
galaxies. For the first step, we begin by defining the rela-
tion P (δdm|Mr, z) — the probability that a galaxy with
magnitude Mr a redshift z resides in a region with local
density δdm, defined as the radius of a sphere containing
1.8×1013h−1M⊙ of dark matter. This relation can be tuned
to reproduce the luminosity-dependent galaxy 2-point func-
tion by using a much higher resolution simulation combined
with the technique known as subhalo abundance matching.
This is an algorithm for populating very high resolution dark
matter simulations with galaxies based on halo and subhalo
properties that accurately reproduces properties of the ob-
served galaxy clustering (Conroy et al. 2006; Wetzel and
White 2010; Behroozi et al. 2010; Busha et al. 2011a). The
relationship P (δdm|Mr, z) can be measured directly from the
resulting catalog. Once this probability relation has been de-
fined, galaxies are added to the simulation by integrating a

(redshift dependent) r-band luminosity function to generate
a list of galaxies with magnitudes and redshifts, selecting
a δdm for each galaxy by drawing from the P (δdm|Mr, z)
distribution, and attaching it to a simulated dark matter
particle with the appropriate δdm and redshift. The advan-
tage of ADDGALS over other commonly used approaches
based on the dark matter halos is the ability to produce sig-
nificantly deeper catalogs using simulations of only modest
size. When applied to the present simulation, we populate
galaxies as dim as Mr ≈ −16, compared with the Mr ≈ −21
completeness limit for a standard halo occupation (HOD)
approach.

While the above algorithm accurately reproduces the
distribution of satellite galaxies, central objects require ex-
plicit information about the mass of their host halos. Thus,
for halos larger than 5×1012h−1M⊙, we assign central galax-
ies using the explicit mass-luminosity relation determined
from our calibration catalog. We also measure δdm for each
halos, which is used to draw a galaxy from the integrated lu-
minosity function with the appropriate magnitude and den-
sity to place at the center.

For the galaxy assignment algorithm, we choose a lu-
minosity function that is similar to the SDSS luminosity
function as measured in Blanton et al. (2003), but evolves
in such a way as to reproduce the higher redshift obser-
vations of the NDWFS and DEEP2 observations. We use
a Schechter Function with φ∗ = 1/81 × 10−2z/3, M∗ =
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